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Abstract
Experimental data for proton nuclear spin relaxation and diffusion of H in
HfTi2Hx are analysed by simultaneously fitting the temperature-dependent
relaxation and diffusion data with a common set of parameters. Hf Ti2Hx has
the C15 structure with the H occupying the inequivalent interstitial e and g
sites. The fitting of the relaxation data uses a rigorous theory of nuclear spin
relaxation between inequivalent sites and makes no assumptions about which
types of H jumps are significant for the relaxation. The diffusion data is fitted by
developing the theory of diffusion between the inequivalent e and g interstitial
sites, which enables the diffusivity to be calculated rigorously as a function
of temperature from the H jump rates in the low concentration limit. Monte
Carlo simulations are used to estimate the effect of diffusion correlation effects
at higher H concentrations. Models for diffusion between inequivalent sites
involve a large number of parameters and density functional theory (DFT)
calculations are used to provide constraints on them. Good fits to both the
relaxation and diffusion data are obtained for energy parameters that are close
to those from the DFT calculations. A complete set of jump parameters for H
between the interstitial sites is deduced which provides a detailed microscopic
description of the diffusion as a function of temperature.

1. Introduction

The diffusion of hydrogen in the hydrogen-stabilized Laves phase compound C15-Hf Ti2Hx has
recently been studied by Eberle et al (2002) (to be referred to as EMSK). This work involved
temperature-dependent measurements of the diffusivity and proton spin-lattice relaxation rates
for x = 3.9, 4.0 and 4.2. Hydrogen occupies the interstitial e and g sites in this compound
with mostly e site occupancy. EMSK analysed the spin-relaxation data in terms of a model of
diffusion between e sites, which causes long-range diffusion, and localized jumps between g
sites which do not contribute to the diffusivity. Some diffusion parameters obtained by fitting
the relaxation data were reasonably consistent with the results of the diffusivity measurements.
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Hf Ti2 is an example of a class of Laves phase intermetallic compounds in which H
has several types of jumps with different characteristic frequencies, partly as a result of
diffusion between crystallographically inequivalent sites (Skripov 2004). Diffusion between
inequivalent sites complicates the analysis of relaxation and diffusion data considerably. The
usual approach for analysing relaxation data in these compounds has been to assume particular,
and independent, H jump models that are responsible for different features of the relaxation
rate behaviour (see for example EMSK). A significant complication that arises with these jump
models is that they require assumptions to be made regarding the microscopic mechanism of
intersite hopping. The validity of these assumptions is difficult to determine experimentally.

The aim of this paper is to use a more rigorous theoretical basis to analyse the proton
spin-relaxation data of Hf Ti2Hx as an example of this class of compounds. Our results rely on
a combination of two ideas. Firstly, we use a general theory for site hopping in the interstitial
sites of the C15-AB2 structure that makes no assumptions about the relative importance of
particular types of hops for determining long-range diffusion. Secondly, we use ab initio
density functional theory (DFT) calculations to estimate the energy barriers and hopping rates
that define the hopping theory. These estimates provide crucial guidance for the refinement
of the model parameters by comparison with experimental measurements of diffusion and
spin-relaxation. The combination of these two approaches provides a powerful tool for the
analysis of hydrogen diffusion in intermetallic compounds.

Our approach is used to provide a consistent description of both spin-relaxation and self-
diffusion of H amongst the inequivalent e and g sites of the C15-AB2 structure. It is known
(Jaroszkiewicz and Strange 1985, Sholl 1998) that the magnetization recoveries for spin-
relaxation due to diffusion amongst inequivalent sites involves a sum of exponentials. By
using the Bloembergen–Purcell–Pound (BPP) model (Bloembergen et al 1948) for the spectral
density functions, we show how these multiple exponentials provide the experimentally
observable results for Hf Ti2Hx. To examine self-diffusion, we specify the temperature-
dependent jump rates between each pair of adjacent sites in the C15-AB2 structure. We then
use the method of Braun and Sholl (1998), which provides a general tool for calculating the
diffusivity D for diffusion on an arbitrary set of inequivalent sites with long-range periodicity.
This method is valid for low concentrations of the diffusing species, so it does not account
for the correlation effects that arise at higher concentrations. These correlation effects can be
included by computing D using Monte Carlo simulations, and we will show that these effects
are small in the present application.

The relaxation and diffusion theory outlined above can, in principle, be used to fit the
available relaxation and diffusion data with a common set of parameters for the elementary
jumps in the diffusion model. These parameters and the diffusion theory can then provide a
detailed picture of the diffusion of H in these AB2 compounds. However, our general model
of diffusion between e and g sites involves a large number of parameters. This creates a major
problem in the fitting of the relaxation and diffusion data because of the complexity of the
fitting procedure and because reasonable fits of the data can be obtained for different sets of
parameters. To overcome this problem, we have used ab initio calculations of the energy
differences between sites and the activation energies for each possible jump using DFT. The
aim of the DFT calculations is not to provide precise values of the parameters, but rather to
provide reasonable estimates that can be used to restrict the ranges of the parameters used in
the data fitting. We will show that using DFT results in this manner does indeed provide useful
information. By using the DFT-derived model parameters as a starting point for refinement of
the model with respect to experimental data, we are able to obtain a model that self-consistently
accounts for self diffusion and spin-relaxation experiments and provides new insight into the
microscopic mechanism of H diffusion in Hf Ti2Hx.
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The relevant theory of nuclear spin relaxation is described in section 2, and the theory
for calculating the diffusivity D for diffusion between inequivalent sites is given in section 3.
These sections also define the microscopic parameters that must be determined to describe
the system of interest. In section 4, the details of the DFT calculations used to provide initial
estimates for these parameters are given. The procedure used to refine these parameters is
given in section 5, along with a discussion of the new insights into diffusion in Hf Ti2Hx that
come out of our model.

2. Nuclear spin relaxation theory

Nuclear spin relaxation due to magnetic dipolar coupling and diffusion of spins on inequivalent
sites involves magnetization recoveries that are linear combinations of exponentials
(Jaroszkiewicz and Strange 1985, Sholl 1998, Luo and Sholl 2003). For diffusion of H on e
and g sites in the cubic C15-AB2 structure, the components of magnetizations Me(t) and Mg(t)

of protons on the e and g sites are the solutions of

dMe

dt
= −aeeMe − aegMg and

dMg

dt
= −ageMe − aggMg, (1)

where the time-independent coefficients aee, aeg, age and agg depend on the spectral density
functions of the magnetic dipolar fluctuations and the jump rates between e and g sites.

The expressions for the coefficients for longitudinal relaxation in the laboratory frame,
and for spectral density functions averaged over magnetic field directions which is appropriate
for polycrystal samples, are

aee = 4�eg(1 − cg) + K

15
[3Jee(ω) + 12Jee(2ω) + Jeg(0) + 3Jeg(ω) + 6Jeg(2ω)], (2)

aeg = −8�ge(1 − ce) + ce

3cg

K

15
[−Jeg(0) + 6Jeg(2ω)], (3)

age = −4�eg(1 − cg) + 3cg

ce

K

15
[−Jge(0) + 6Jge(2ω)], (4)

agg = 8�ge(1 − ce) + K

15
[3Jgg(ω) + 12Jgg(2ω) + Jge(0) + 3Jge(ω) + 6Jge(2ω)], (5)

where K = γ4h̄2I(I + 1), γ is the gyromagnetic ratio of a spin, I is the quantum number
of the spin, ω = γB0 is the resonant frequency of the spin in the applied magnetic field B0,
and Jαβ(ω) are spectral density functions which are described below. The first terms on the
right-hand sides of these equations correspond to the transfer of magnetization between e and
g sites due to the jumps of the spins. The attempted jump rates of the spins are �αβ where α

and β are e or g, and a jump will be blocked with a probability (1−cβ). There are three nearest
neighbour g sites of an e site and one nearest neighbour e site of a g site.

The solution of the differential equations (1) shows that each of Me(t) and Mg(t) are linear
combinations of two exponentials. The observed magnetization is M(t) = Me(t)+Mg(t) and

M(t) = U exp(−λ+t) + V exp(−λ−t), (6)
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where
λ± = (aee + agg ± f )/2, (7)

U = [(aee + age − λ−)Me(0) + (aeg + agg − λ−)Mg(0)]/f , (8)

V = [(λ+ − aee − age)Me(0) + (λ+ − aeg − agg)Mg(0)/f , (9)

f = [(aee − agg)
2 + 4aegage]1/2. (10)

If the jump rates �αβ between the sites are much greater than the spectral density function
terms in equations (2)–(5), it can be shown that only the exponential with λ− is observable
experimentally and that the expression for this exponent is

R1 = K

5

{
4ce

x
[Jee(ω) + 4Jee(2ω) + Jeg(ω) + 4Jeg(2ω)]

+12cg

x
[Jgg(ω) + 4Jgg(2ω) + Jge(ω) + 4Jge(2ω)]

}
. (11)

This expression is the same as that obtained by generalizing the relaxation rate for diffusion
on equivalent sites to the case of inequivalent sites by simply taking the weighted averages for
the various e and g site dipolar interactions. This case of rapid jumps between the inequivalent
sites corresponds physically to the establishment of a spin temperature. It will be shown in
section 5 that the expression (11) for R1 is an excellent approximation for λ− in Hf Ti2Hx.

The spectral density functions Jαβ(ω) are the Fourier transforms of the correlation
functions Gαβ(t) of the magnetic dipolar fluctuations between pairs of diffusing spins. Within
the BPP model (Bloembergen et al 1948) the time dependence of the correlation function is
given by the probability of no jump of either spin of a pair in a time t, which is e−�t , where
� is the sum of the jump rates of each of the spins. The BPP approximations for the spectral
density functions are then (Jaroszkiewicz and Strange 1985, Luo and Sholl 2003) given by

Jee(ω) = 2ceSee
2�e

(2�e)2 + ω2
, (12)

Jeg(ω) = 2cgSeg
�e + �g

(�e + �g)2 + ω2
, (13)

Jge(ω) = 2ceSge
�e + �g

(�e + �g)2 + ω2
, (14)

Jgg(ω) = 2cgSgg
2�g

(2�g)2 + ω2
, (15)

where �e is the total jump rate from an e site to any site and �g is the total jump rate from
a g site to any site. These jump rates are

�e = 12(1 − ce)�ee + 3(1 − cg)�eg, (16)

�g = (1 − ce)�ge + 2(1 − cg)�gg1 + (1 − cg)�gg2, (17)

where �ee, �eg, �ge, �gg1, and �gg2 are the attempted jump rates from an e site to an e site,
from an e site to a g site, from a g site to an e site, from a g site to a neighbouring g site within
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a hexagon, and from a g site to a neighbouring g site in another hexagon, respectively. The
jump rate �ee will be omitted in the fitting of the Hf Ti2Hx data in section 5 because our DFT
calculations show that this rate is negligibly small, but is included here for completeness. The
parameters Sαβ are the summations

∑
i r

−6
i where the origin is a site of type α and ri is the

distance to sites of type β.
The values of ce and cg are related to the jump rates �eg and �ge by the principle of detailed

balance so that

ce(1 − cg)�eg = cg(1 − ce)�ge. (18)

Solving this equation and 4ce + 12cg = x gives ce as a solution of the quadratic equation

4(z − 1)c2
e − [12 + 4z + x(z − 1)]ce + xz = 0, (19)

where z = �ge/�eg. The values of ce and cg are then the positive solutions of this quadratic
equation and cg = (x − 4ce)/12.

3. Diffusion theory

The diffusivity D of atoms diffusing between inequivalent sites can be calculated from the
jump rates between sites by the method of Braun and Sholl (1998) for low concentrations of
the diffusing species. The components of the diffusivity tensor Dij are calculated from

Dij = v∗
0�1v1 + v∗

0�2v0/2, (20)

where v1 is the solution of the matrix equation

�0v1 = −�1v0. (21)

In these expressions v0 is a one-dimensional matrix determined by the probability of occupation
of each type of site, and �0, �1, and �2 are square matrices involving the geometry of the
jumps and the jump rates. The size of the matrices is the number of diffusion sites per unit
cell. The above equations can be solved analytically in simple cases and numerically when an
analytic solution is not possible. For the case of e and g sites in the C15-AB2 structure, there
are 128 sites per cubic unit cell. This can be reduced to 32 by choosing a non-cubic primitive
FCC unit cell, but the set of linear equations (21) is still too large for an algebraic solution. A
numerical solution is therefore necessary in this case. The diffusivity tensor is isotropic for
this structure.

The above discussion is for diffusion in the low-concentration limit. The results are,
however, also likely to be a good approximation at concentrations of x ∼ 4 in Hf Ti2Hx provided
that the jump rates used in the calculations are the actual jump rates including site-blocking
effects rather than attempted jump rates. This is because the values of the correlation factors
that take account of the correlations at higher concentrations are likely to be close to unity
because the g site concentration is expected to be quite low. The effect of the correlations can
be estimated by performing Monte Carlo simulations of the diffusivity and the results of these
calculations are given in section 5.

The theory in this and the previous section enables the spin relaxation rates and the
diffusivity to be calculated from a set of jump rates �ee, �eg, �ge, �gg1 and �gg2. If each jump
is assumed to have an Arrhenius form, then five prefactors and five activation energies must be
determined if these jump rates are to be fitted to experimental data. Estimates of their values
are therefore very useful in constraining the ranges of the parameters to be used in data-fitting
procedures. The following section describes DFT calculations to provide these estimates. The
data-fitting procedure is then described in section 5.
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4. Density functional theory calculations

It has been recognized for many years that the diffusion of light interstitials in metals can show
significant quantum effects, especially at low temperatures (Flynn 1972). A first-principles
calculation of the diffusion rate of H in metals is a difficult task if quantum effects such as
the appearance of resonant modes are to be included accurately (Schober and Stoneham 1988,
Stoneham 1990). Our aim here is not to provide precise values of the individual jump rates,
but rather to constrain the range of parameters used in the data fitting in the following section.
Simpler DFT calculations that do not include full quantum effects have therefore been used.
Plane wave DFT calculations have provided a useful computational tool for making quantitative
predictions regarding the binding, vibration and diffusion of H in interstitial sites in pure metals
(Smithson et al 2002) and disordered alloys (Kamakoti and Sholl 2003), as well as on metal
surfaces (Greeley and Mavrikakis 2003, Jiang and Carter 2003). DFT has also been used by
Hong and Fu (2002) to examine H binding in e and g sites of a series of C15-AB2 materials
with A = Zr. To our knowledge, DFT has not previously been used to examine H diffusion in
C15 intermetallics.

The plane wave DFT calculations to examine H diffusion in Hf Ti2Hx were performed
using the Vienna ab initio simulation package (VASP) (Kresse and Furthmuller 1996) using
the supplied ultrasoft pseudopotentials and the PW91-GGA exchange-correlation functional. A
computational cell extended by periodic boundary conditions was used to describe a material of
infinite extent. The cubic computational cell of Hf Ti2 comprised 8 Hf and 16 Ti atoms. k-space
was sampled using 3 × 3 × 3 k-points positioned using the Monkhorst–Pack scheme. Results
using larger numbers of k-points gave very minor total energy differences from calculations
with 3 × 3 × 3 k-points. A cutoff energy of 270 eV was used throughout. Geometries were
optimized until the forces on all unconstrained atoms were less than 0.03 eV Å−1. Unless
otherwise specified, all atoms were allowed to relax during geometry optimizations.

Calculations were first performed for Hf Ti2Hx with x = 0 and 0.125, that is, with 0 and 1 H
atom in the computational cell. The initial configuration with x = 0.125 had the H atom in an e
site of the metal lattice. The results indicated that the C15 crystal structure of Hf Ti2 is not stable
at these loadings; large structural distortions were observed during geometry optimization that
significantly disrupted the initial C15 structure. These observations are in agreement with
experimental findings that C15-Hf Ti2 is only stabilized by appreciable loadings of H (EMSK,
Skripov et al 2000).

The remainder of the calculations were performed for Hf Ti2Hx with x = 4, and 4.125
(that is, 32 and 33 H atoms in the computational cell). The C15 crystal structure is known
experimentally to be stable at these H loadings and our calculations also exhibit this property.
For x = 4, with H atoms occupying all e sites, the calculations predict a lattice parameter
of a0 = 8.10 Å, in excellent agreement with the experimentally reported 8.095 ± 0.005 Å
(EMSK). In all subsequent calculations, the lattice parameter was fixed at the DFT-optimized
value. In the optimized Hf Ti2H4 structure, the Hf–H distance was 1.995 Å and the Ti–H
distance was 1.895 Å.

The energy difference between H occupation of e and g sites was determined by moving
one of the 32 H atoms in the Hf Ti2H4 structure (referred to below as the mobile H atom) from
an e site to a g site while keeping the other 31 H atoms at e sites. Geometry optimization
of this configuration gives the energy change in moving from an e site to a g site, which we
will denote as Eg, to be 0.05 eV. The Hf–H distance for the H atom occupying a g site in
this configuration is 2.035 Å and the Ti–H distance is 1.935 Å. Since zero-point energies for
interstitial H can be substantial, zero-point energies for the mobile H atom were calculated by
determining the vibrational frequencies of the mobile atom in the e and g sites while holding all
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other atoms in the computational cell fixed (Kamakoti and Sholl 2003). This approach treats
hydrogen vibrations as being decoupled from phonon modes of the crystal. This is clearly a
simplification of true vibrational dynamics, but provides an avenue to estimate the interstitial
zero-point energies using reasonable amounts of computing resources. This approach has been
shown to provide accurate predictions of H vibrational frequencies on metal surfaces (Greeley
and Mavrikakis 2003). The e (g) site zero-point energy computed in this way was 0.24 (0.21)
eV. Incorporating these zero-point energies in the calculation of Eg gives Eg = 0.02 eV. The
calculation of the zero-point energies has neglected lattice relaxation which would reduce their
magnitudes, but the above results provide a sufficient estimate of Eg for the present purposes.

Transition states for hopping of H between adjacent interstitial sites were determined using
the nudged elastic band (NEB) method (Henkelman et al 2000). All atoms were allowed to relax
during these calculations. Following convergence of the NEB calculations, the configuration
most closely approximating a transition state on the computed minimum energy path was
geometry optimized using a quasi-Newton algorithm that converges to critical points on the
potential energy surface for starting points sufficiently close to a critical point. This procedure
allowed the precise location of the transition states. At each transition state, the vibrational
frequencies for the mobile H atoms were computed as described above, yielding two real and
one imaginary frequencies.

The activation energy for e to g hops was determined by moving one of the 32 H atoms
in the Hf Ti2H4 structure from an e site to a g site while keeping the other 31 H atoms at
e sites. The resulting transition state was 0.22 eV higher in energy than the e site. For g to
g hops the optimized geometry with 33 H atoms in the Hf Ti2H4.125 structure was used, with
32 H at the e sites and the remaining H allowed to move between two g sites. Separate NEB
calculations were performed to compute both inter-hexagonal and intra-hexagonal g to g hops.
The activation energy for intra-hexagonal hops was found to be 0.07 eV, while the barrier for
inter-hexagonal hops was 0.22 eV.

NEB calculations were also used to examine H hops between e sites. In addition to the
e to e hops via g sites, e to e hops can take place in principle via the tetrahedral b site, which
in the C15-AB2 structure is defined by four B atoms. The DFT calculations of Hong and Fu
(2002) indicated that b sites are extremely unfavourable in a series of C15 intermetallics where
A is Zr. The NEB calculations here show that b sites are also extremely unfavorable in Hf Ti2,
with the transition state for e to b hopping lying approximately 1 eV higher in energy than the
e site. In comparing this energy to the much lower barriers found above for hopping between
e and g sites, it is clear that e to e hops via b sites do not play any significant role in H diffusion
in Hf Ti2Hx.

Once the energy barriers Ea for hops between adjacent sites are known, a simple estimate
of the hopping rates � between these sites is the Vineyard expression from classical harmonic
transition state theory

� = ν1ν2ν3

ν
‡
1ν

‡
2

e−Ea/kT , (22)

where νi(ν
‡
j ) are the real frequencies associated with the vibrational frequencies of the mobile

H atom in the binding site (at the transition state). Estimating the prefactors for site to site
hopping in this way gives 2.7 × 1013 s−1 for e to g hops, 1.9 × 1013 s−1 for g to e hops,
1.6 × 1013 s−1 for g to g intra-hexagon hops, and 1.1 × 1013 s−1 for g to g inter-hexagon hops.

The activation energies and hopping rates described above are based upon classical
transition state theory. The quantum effect of the zero-point energies can be incorporated
into harmonic transition state theory by treating both the binding site and transition state as
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Figure 1. The hopping rate � as a function of 1000/T for e to g hops. The classical result is from
equation (22), the inclusion of zero-point energy effects is from equation (23).

quantum mechanical harmonic oscillators. The resulting expression is

� = ν1ν2ν3

ν
‡
1ν

‡
2

e−Ea/kT

∏
i sinh(Xi)/Xi∏
i sinh(X

‡
i )/X

‡
i

, (23)

where Xi = h̄ωi/(2kT ), and the products in the numerator (denominator) are over the
vibrational frequencies of the mobile atom at the energy minimum (transition state). At low
temperatures, the effective activation energy from this expression approaches the difference
between the zero-point corrected energy at the minimum and transition state. In this limit, the
activation energy for e to g hops is 0.17 eV, while the intra- and inter-hexagonal g to g hops
have activation energies of 0.05 and 0.23 eV, respectively. The temperature dependence of the
e to g hopping rate as defined in equation (23) is compared to the classical result, equation
(22), in figure 1.

5. Fitting of Hf Ti2Hx relaxation and diffusion data

The aim in this section is to use the theory of the previous three sections to find a set of diffusion
parameters to fit both the diffusion data and nuclear spin relaxation data of EMSK for Hf Ti2Hx

with x = 3.9, 4.0 and 4.2. The energy of an e site is taken as zero, the energy of a g site is
Eg, the height of the energy barrier between the e and g sites is Eeg, and the corresponding
heights of the energy barriers between g sites are Egg1 and Egg2 for diffusion between sites on
a hexagon and sites between hexagons, respectively. The jump rates are then assumed to be
of the Arrhenius forms

�eg = �0eg exp(−Eeg/kT ), (24)

�ge = �0ge exp(−(Eeg − Eg)/kT ), (25)

�gg1 = �0gg1 exp(−(Egg1 − Eg)/kT ), (26)

�gg2 = �0gg2 exp(−(Egg2 − Eg)/kT ). (27)
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Jumps between neighbouring e sites are not included in the diffusion model (�ee = 0) because
the DFT calculations showed these jumps to be very unfavourable.

The spin relaxation data are shown in figure 2 for x = 4.0 and resonance frequencies
of 37.3, 67.7 and 90.0 MHz. The data include the small electronic relaxation contribution
(EMSK). The plots show maxima with different slopes on each side of the maxima. EMSK
fitted the data (after subtracting the electronic relaxation) with a model that was the sum of
two contributions. One of these corresponded to diffusion between the e sites and this was the
dominant contribution in the vicinity of a maximum. The other term was attributed to diffusion
between g sites within hexagons and this contribution was a broader and lower peak which had
its maximum at lower temperatures than the temperature of the experimental maximum. It is
useful to analyse the theory of section 3 in terms of such contributions. This can be done for the
expression (11) for the relaxation rate R1. It was verified numerically that this approximation
agrees very well with the more rigorous expression for λ− for the range of diffusion parameters
relevant to Hf Ti2Hx.

The expression (11) can be written within the BPP approximation in the form

R1 = 8K

5xω

[
c2

eSeeF(ye) + 3c2
gSggF(yg) + 6cecgSgeF(yeg)

]
, (28)

where ye = ω/(2�e), yg = ω/(2�g), yeg = ω/(�e + �g) and the function F(y) is

F(y) = y

1 + y2
+ 4y

1 + 4y2
. (29)

The function F(y) has a maximum of 1.43 at y = 0.62. The expression for R1 is therefore the
sum of three such terms arising from magnetic dipolar interactions between pairs of protons
initially on e sites (the ee term), between protons initially on g sites (the gg term), and between
protons with initially one on an e site and one on a g site (the eg term), respectively. Each of
these terms will contribute a curve with a maximum, where the magnitude and the position of
the maxima will be different for each term.

The values of the sums Sαβ for the ideal e and g site positions in the C15-AB2 structure are,
in units of a−6

0 where a0 is the lattice parameter, See = 7.40 × 103, Seg = 3Sge = 2.87 × 105,
Sgg = 2.23 × 105. The lattice parameter is a0 = 8.095 Å. The sums could be different
from these ideal values because H do not occupy the ideal positions in Hf Ti2Hx (EMSK)
and because the minimum H–H separation in metal–hydrogen systems is 2.1 Å according
to the Westlake criterion (see, for example, Flanagan and Oates 1988). For the ideal e and g
positions in Hf Ti2Hx the distance between neighbouring g sites within a hexagon, and between
neighbouring e and g sites, is 1.23 Å. The distance between neighbouring g sites on adjacent
hexagons is 1.47 Å. It is therefore unlikely that such pairs of sites would both be occupied by H.
This exclusion effect would reduce the values of the sums Seg, Sge and Sgg substantially since
it is the nearest neighbours that dominate the sums. Three further parameters were introduced
to account for these effects: a factor f1 that multiplies See, a factor f2 that multiplies Seg and
Sge, and a factor f3 that multiplies Sgg. From the above discussion it would be expected that
the values of f2 and f3 would be appreciably less than unity, and that f1 ∼ 1 since the distance
between neighbouring e sites is 2.86 Å and occupation of these sites would not be limited by
the Westlake criterion.

The ratios of the maxima of the ee, gg and eg terms in equation (28) can then be estimated
and they are f1 : 91f3(cg/ce)

2 : 78f2(cg/ce). Since the g site occupation probability in
Hf Ti2Hx is small, the ratio cg/ce will be appreciably less than unity. The above reasoning
suggests that the ee term in equation (28) is dominant near the main peak in the data, that the
gg term is likely to be small, and that the eg term contributes a lower peak at a temperature
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different from that at which the main peak occurs. Further evidence that the ee term is dominant
near the main peak is that the value of the maximum due to this term is 27f1c

2
e for x = 4 and

a frequency of 37.3 MHz. This is quite close to the experimental maximum of 25.4 s−1 for ce

and f1 ∼ 1. Since the ee term dominates near this maximum, the position of the maximum is
at a temperature for which ω/(2�e) = 0.62. This relation can be used to determine one of the
diffusion parameters by fitting the position of the relaxation maximum.

A least-squares fit of the relaxation data (after subtraction of the electronic relaxation
contribution) was therefore undertaken by omitting the gg term in equation (28) and varying
the energy parameters in ranges about the values obtained from the DFT calculations. The
jump rate prefactors from the DFT calculations were not used in the fitting procedure and their
values were taken as free parameters. The parameter f3 was not used in the fitting because the
gg term is omitted. The jump rate �gg2 was also taken as zero because the DFT calculations
showed that �gg1 � �gg2 in general. The number of independent trial parameters was reduced
by fitting the value and temperature of the peak in the experimental data, and by fitting the value
and temperature of one other experimental point in each calculation of the variance for each
set of trial parameters. The values of some of the parameters are also related by the principle
of detailed balance. In addition, one of the fitting parameters was replaced by the value of cg

at 300 K, since cg(300 K) is expected to be approximately 0.05–0.07 (EMSK). The value of
cg(300 K) was varied around this range. Excellent fits of the relaxation data were obtained
by this procedure. The diffusivity D was then calculated as a function of temperature, using
the methods described in section 3, for the parameters obtained from the fits to the relaxation
data. The resulting values of D were significantly smaller than the experimental values. This
set of parameters from the fits to the relaxation data were therefore unsatisfactory. A further
least-squares fit of the relaxation data was therefore undertaken with an additional constraint
that the resulting values of the diffusivity were close to the experimental values for each trial
set of parameters. In addition, including �gg2 in the fits gave a significant change to the values
of D but had a negligible effect on the relaxation rates. A set of parameters was then sought
which would give a low value of the variance in the relaxation fit and also a reasonable fit to the
diffusion data. When such a set of parameters was found, the relaxation rate was recalculated
including the gg term in equation (28) to ensure this produced a negligible effect.

The results for the simultaneous fits of the relaxation and diffusion data are shown in
figures 2 and 3 for x = 4.0. Similar quality of fits (not shown) were obtained for x = 3.9
and 4.2. The ee and eg contributions to the relaxation rates for the 37.3 MHz data are also
shown in figure 2. The values of the diffusivity calculated by equations (20) and (21) are
shown in figure 3. Monte Carlo calculations of the diffusivity were carried out for the same
parameters as those used in figure 3 to investigate the effects of correlations in the diffusion
that are neglected in the low-concentration-limit theories of equations (20) and (21). These
correlations are those that occur between jumps of a particular H and the motions of other H
atoms at non-vanishing values of concentration x. The Monte Carlo results agreed with the
results of the exact low-concentration results in figure 3 to within ∼10% over the range of
temperatures shown, so that the correlation effects are not significant within the accuracy of
the fitting procedures. This result is consistent with the fact that for x ∼ 4 most e sites are
occupied and most g sites unoccupied. Since the long range diffusion proceeds via the g sites
the correlation effects would not be expected to be significant.

The parameters for these fits and the values from the DFT calculations are given in
table 1. The quality of the fits is quite sensitive to small changes in the energies and so
the energy parameters are given to a precision of 0.001 eV. The accuracy of the energies is not,
however, of this precision because other combinations of parameters with less precision can also
produce comparable fits. Since there is no discernible trend in the parameters as a function of
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Figure 2. Fit of the relaxation data for x=4.0. Symbols are experimental data:◦, 37.3 MHz; �,
67.7 MHz; and �, 90.0 MHz. The continuous lines are the fit to the data (including the electronic
relaxation contribution). The dashed lines are the ee contribution (left-hand side peak) and the eg
contribution (right-hand side peak) to the relaxation rate given by equation (28) for the 37.3 MHz
data.
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Figure 3. Fit to the diffusivity data for x = 4.0 for the same parameters as in figure 2. The symbols
are the experimental data. The solid line is the calculated D using equations (20) and (21).

concentration x the differences between the values of the parameters for different x is possibly
an indication of their accuracy. The energies deduced from the fits are in reasonable agreement
with the estimates from the DFT calculations. The values of the prefactors �0gg2 are also in
reasonable agreement with the DFT calculations, but the other prefactors are significantly
smaller than the DFT results. If the diffusivity is calculated directly from the DFT parameters,
the results for D on an Arrhenius plot show that the slope is in reasonable agreement with
experiment, but the absolute values of D are too large. This suggests that the approximations
in our DFT calculations lead to an overestimate of the prefactors in this system.

The values of f1 ∼ 1.5 and f2 ∼ 0.04 suggest that H does not occupy the ideal positions
of the interstitial e and g sites. Small changes in the positions of the sites can cause significant
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Table 1. Values of the parameters for the fits of the theory to the relaxation and diffusion data for
x = 3.9, 4.0 and 4.2. DFT (classical) are the results of the DFT calculations for classical transition
rate theory and DFT (ZPE) are the energies calculated by including zero-point-energy corrections.
Energies are in eV and prefactors are in units of s−1.

x = 3.9 x = 4.0 x = 4.2 DFT (classical) DFT (ZPE)

Eg 0.059 0.048 0.057 0.05 0.02
Eeg 0.155 0.166 0.163 0.22 0.17
Egg1 − Eg 0.078 0.090 0.091 0.07 0.05
Egg2 − Eg 0.28 0.28 0.28 0.22 0.23
�0eg 4.5 × 1010 6.6 × 1010 6.5 × 1010 2.7×1013

�0ge 1.5 × 1011 3.0 × 1011 2.7 × 1011 1.9 × 1013

�0gg1 6.0 × 1010 1.1 × 1011 1.2 × 1011 1.6 × 1013

�0gg2 2.7 × 1013 3.3 × 1013 3.9 × 1013 1.1 × 1013

f1 1.49 1.58 1.45
f2 0.040 0.032 0.038
cg(300 K) 0.080 0.088 0.089

changes to the values of the lattice sums Sαβ because of the 1/r6 summand. The small value
of f2 also suggests that the H are excluded from near-neighbour positions on the interstitial
sites because of the Westlake criterion. The values of cg at 300 K in table 1 are in reasonable
agreement with the values of 0.05–0.07 deduced from neutron scattering experiments on the
deuterides (EMSK).

The model used by EMSK to analyse the relaxation data involved the sum of two
independent terms. One of these was diffusion between e sites which produces long-range
diffusion. Since direct ee hops are energetically unfavourable, the diffusion between e sites
must proceed via g sites which is strictly inconsistent with the model used for the spectral
density functions. The present results do, however, agree with the EMSK model in that it is the
ee magnetic dipolar interactions that dominate the relaxation near the peak in the relaxation
rates. The second term used by EMSK was relaxation due to dipolar interactions between H
fixed at e sites with H undergoing localized motion within hexagons formed by six g sites.
The present theory also deduces that these eg interactions produce a significant contribution
to the relaxation rates at lower temperatures. This theory, however, includes all eg, ge and gg
hops within the BPP approximation compared with just the gg hops within hexagons used by
EMSK for the eg interactions.

The values of a complete set of parameters for jumps between the e and g sites enables
the nature of diffusion of H in Hf Ti2Hx to be investigated in detail. The various jump rates
between interstitial sites and the fractions of H on e and g sites were calculated as functions of
temperature. The following conclusions are valid for all temperatures such that 1000/T > 2.
Most of the H occupies e sites and following a jump from an e to a g site, the H is more likely
to jump to another g site than return to the e site because the jump rates to g sites are faster than
the jump rate to an e site. This effect becomes more pronounced as the temperature decreases.
The jumps from one g site to another are mainly between hexagons at high temperatures, but
change to jumps mainly within hexagons with decreasing temperature. At low temperatures
the jumps within hexagons greatly dominate. For example, for 1000/T = 7 the gg1 jump
rate within hexagons is ∼105 faster than the gg2 jump rate between hexagons. The physical
picture of the diffusion is therefore that of H jumping from an e to a g site and then diffusing
between g sites before returning temporarily to another e site. At low temperatures, very rapid
diffusion within a particular hexagon of g sites will occur before a jump to another hexagon or
e site. This physical picture is in general agreement with the diffusion model used by EMSK.
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6. Conclusions

The combination of nuclear spin relaxation data, diffusion data, DFT calculations, and the
theory of diffusion and relaxation for H hopping between inequivalent sites has been used
to analyse diffusion of H in Hf Ti2Hx. The theory of diffusion between inequivalent sites
produces a much larger set of parameters than is the case for diffusion between equivalent
sites. Fitting these parameters to the relaxation data alone does not generate unique values
of the parameters and the DFT estimates of the diffusion parameters are extremely useful in
providing constraints on them. The combination of the relaxation and diffusion data is also
valuable in providing further constraints.

A good fit to both the relaxation and diffusion data was obtained for a set of activation
energies that are close to the DFT values. The jump frequency prefactors from the fit
are substantially smaller than the DFT results in general, possibly due to the neglect of a
full quantum treatment of the diffusion. Nevertheless, the DFT calculations and methods
of analysis used in fitting the diffusion and relaxation data should be generally applicable
to diffusion in other Laves phase compounds and in other systems with diffusion between
inequivalent sites.
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